

Sampling techniques for studying nonvolant terrestrial mammals

ECM – T5

Core research questions in Ecology and Conservation

- How animals occur throughout the landscape?
- How many individuals are there?
- Which is the population trend?
- Why populations evidence those trends?

Different resolution levels:

1. Where animals occur?

Distribution

2.

3. 4.

Different resolution levels:

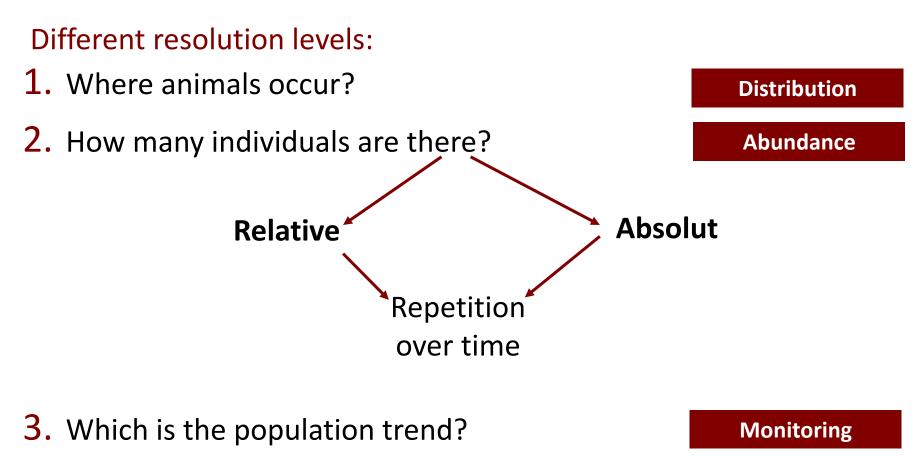
- **1.** Where animals occur?
- 2. How many individuals are there?

Distribution

ECM

Abundance

Relative⁴


It uses abundance indexes (e.g., number of signs of presence, visitation rates) that can be compared as a function of time or between areas

Absolut

It requires the use of counting methods (censuses) that allow estimating the number or density of individuals in the population

3.

4.

Why monitoring animal populations is important?

- Only way to evaluate the effect of impacts and the effectiveness of conservation programs
- Needed to provide knowledge to conservation strategies at regional and national or global scales (e.g., United Nations Biodiversity Convention, Sustainable Development Objectives, Ecosystem Millenium Assessment)

Strategic Plan for Biodiversity 2011–2020 and the Aichi Targets

"Living in Harmony with Nature"

The Strategic Plan for Biodiversity 2011-2020 – A ten-year framework for action by all countries and stakeholders to save biodiversity and enhance its benefits for people.

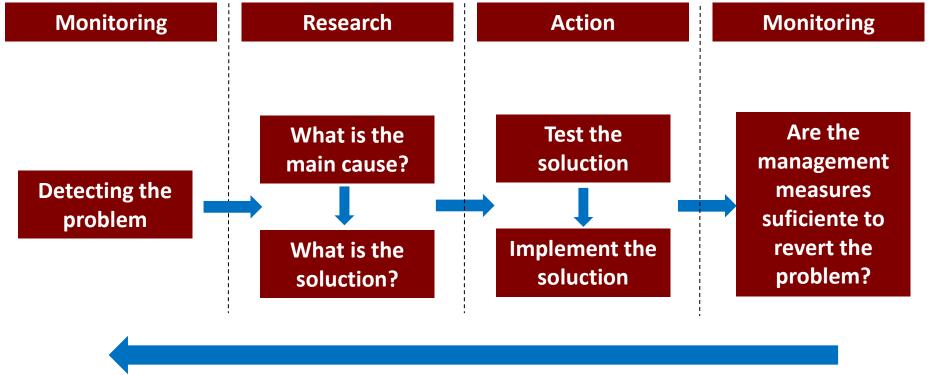
ECM

4

6

3

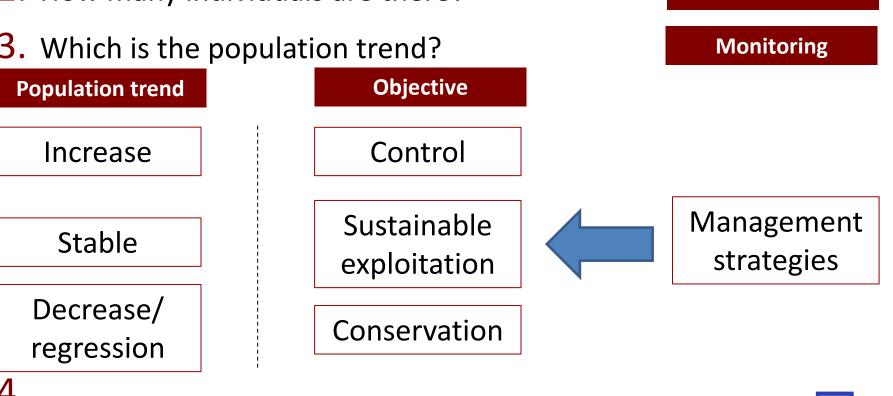
4


Aichi Biodiversity Targets

- Strategic Goal A: Address the underlying causes of biodiversity loss by mainstreaming biodiversity across government and society
- Strategic Goal B: Reduce the direct pressures on biodiversity and promote sustainable use
- Strategic Goal C: To improve the status of biodiversity by safeguarding ecosystems, 3 species and genetic diversity
- Strategic Goal D: Enhance the benefits to all from biodiversity and ecosystem services
- Strategic Goal E: Enhance implementation through participatory planning, knowledge management and capacity building

ECM

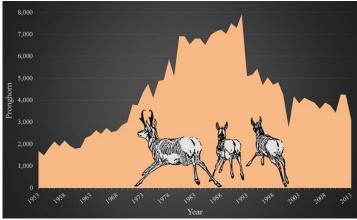
Conservations needs monitoring, and monitoring needs research

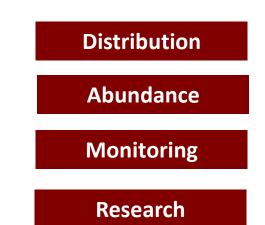

New evaluation

Different resolution levels:

- **1.** Where animals occur?
- How many individuals are there?
- **3.** Which is the population trend?

ECM


Ciências

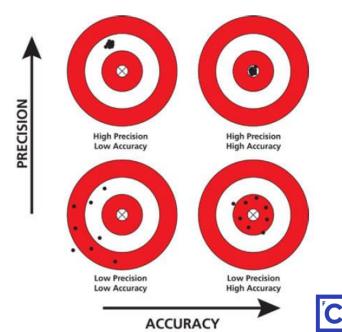

Distribution

Abundance

Different resolution levels:

- **1.** Where animals occur?
- 2. How many individuals are there?
- **3.** Which is the population trend?
- Why populations evidence those trends,
 i.e. why the stability or the change?
 (demographic processes)

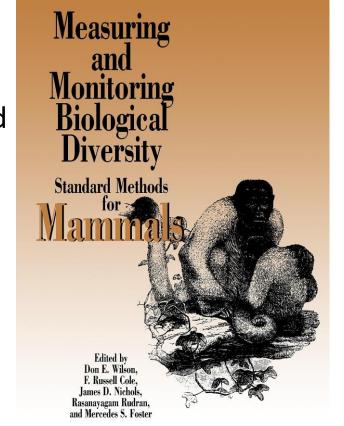
ECM


Sampling methods

Ciências

Sampling methods may be direct or indirect and vary according to a gradient of:

- **Precision** (how similar are the measured values, e.g. SD values)
- Accuracy (how close is the estimate of the actual value)
- Cost


The selection of the method depends on the issue under analysis and the cost-benefit relationship

Sampling methods

Three fundamental questions in method's selection:

- Probability of observation or capture
- Size of the study area (time and money investment are constraints)
- Available human resources

Sampling methods

ECM

Mammals can be difficult to study because they often:

- Evidence secretive behaviors
- Show nocturnal habits
- Occupy vast areas
- Prefer areas with high vegetation cover
- Live in low density

Complex census and monitoring approaches

ECM

Questionnaires – face-to-face/oral, written, reports of observations

Advantages: non-invasive method, applicable to different scales (including broad scale), low cost

Disadvantages: misidentification of species, reduced response rates, concentration of observations - e.g. along roads, in proximity to houses or areas of concentrated activity

ECM

Questionnaires

Inquérito à População

Muitos fatores têm contribuído para que o lobo-ibérico (Canis lupos signatus) seja admirado por muitas pessoas, mas odiado por outras. A faita de esclarecimento, informação e proteção das pessoas tem contribuído para que este problema continue, colocando em risco, ao longo dos anos, a sobrevivência de um lcone da fauna portuguesa.

Um estudo mais elaborado sobre o conhecimento e atitudes do homem face ao lobo constitui assim um meio indispensável para a proteção e esclarecimento das populações, bem como para uma melhor gestão e conservação do lobo-tórico e seu habilat.

Posto isto, este questionário, no âmbito da dissertação de mestrado em Ecologia Aplicada da aluna Diana Lopes, da Universidade de Aveiro, é uma ferramenta indispensável para o cumprimento destes objetivos.

Solicita-se assim a colaboração de todos para o seu preenchimento.

Idade: Sexo:	M F Localidade:
Profissão:	Freguesia:
Habilitações Académia	as: Concelho:
Tem gado doméstico? (se respondeu 'não' av	
Tem cães de guarda/ga	ado? Sim Não

Grupo I - As seguintes perguntas são sobre experiências pessoais e conhecimento sobre o lobo. Por favor, assinale a resposta que melhor descreve a sua.

Sim	Não
Sim	Não
Sir	Não
	Sim Sim Sim Sim Sim Sim Sim

ECM

...

Questionnaires

O esquilo vermelho

em Portugal

Página inicial

Sobre

Fotos

Vídeos

Publicações

Comunidade

Criar uma Página

O esquilo vermelho em Portugal 21 de novembro de 2017 · S O nosso projeto em destaque na Wilder:

WILDER.PT Portugueses já contribuíram com 1.800 registos para sabermos onde há esquilos - Wilder

Signs of presence – scent stations, track-plates, hair-traps, transects for scat collection and DNA fecal analysis

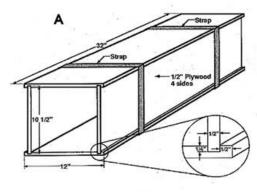
Advantages: non-invasive method, often high accuracy

Disadvantages: complexity, high cost (DNA analysis), and applicability only at lower spatial scales

ECM

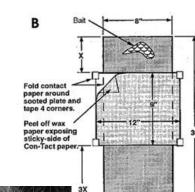
Signs of presence

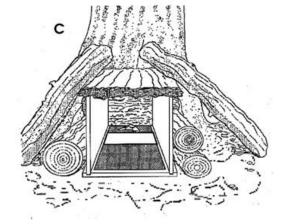
Scent stations



ECM

Signs of presence

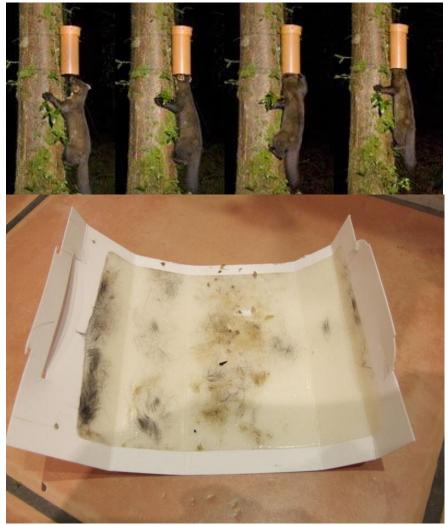

Track-plates



TRACK PLATE BOX PARTS LIST

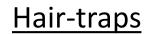
2@ 1/2 in. x 12 in. x 32 in. Plywood 2@ 1/2 in. x 10 1/2 in. x 32 in. Plywood 2@ 60 in. Strap 1@ 1/16 in. x 8 in. x 30 in Aluminum Flat Stock 1@ 9 in. x 12 in. Con-Tact Paper Duct Tape

04-14-2015 05:01:11



Signs of presence

Hair-traps

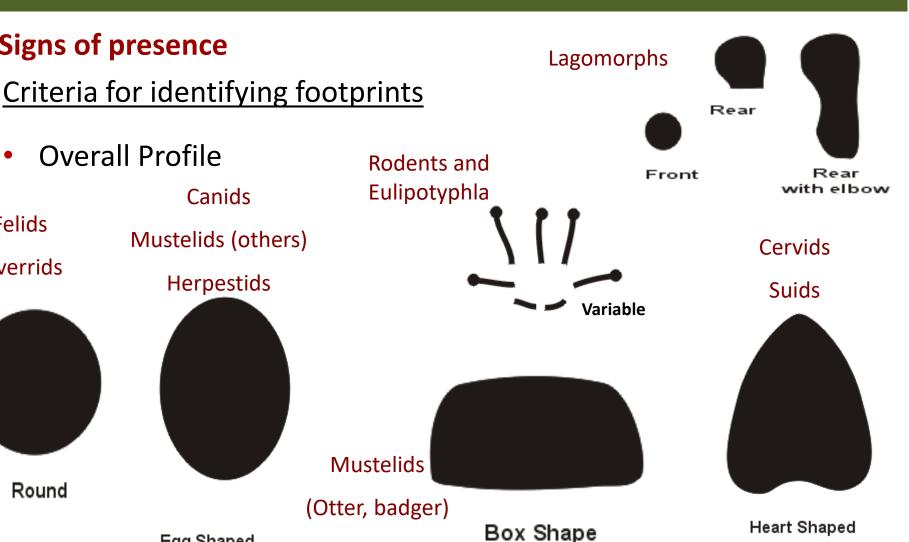


Signs of presence

Bushnell 2021/2022 – Miguel Rosalino 02-21-2011 16:09:23

ECM

Signs of presence


Criteria for identifying footprints

- Profile
- Size
- Shape
- Location

ECM

Egg Shaped

Canids

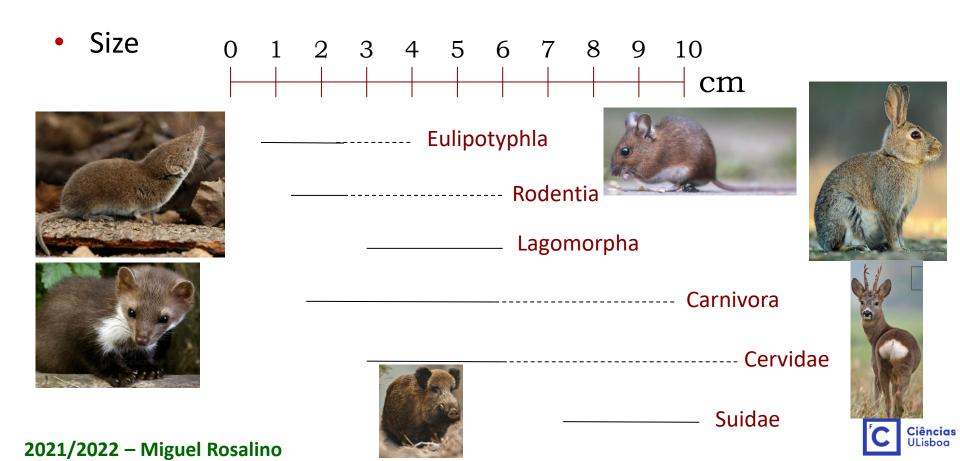
2021/2022 – Miguel Rosalino

Signs of presence

Overall Profile

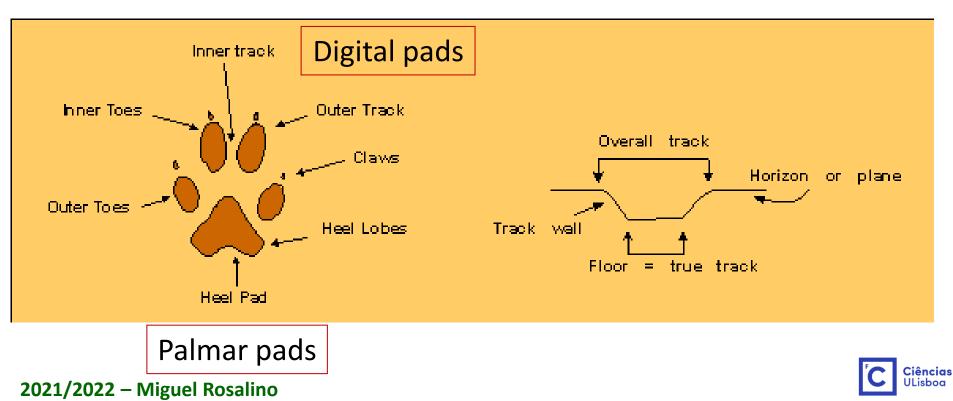
Felids

Viverrids


Round

Heart Shaped

Signs of presence


Criteria for identifying footprints

Signs of presence

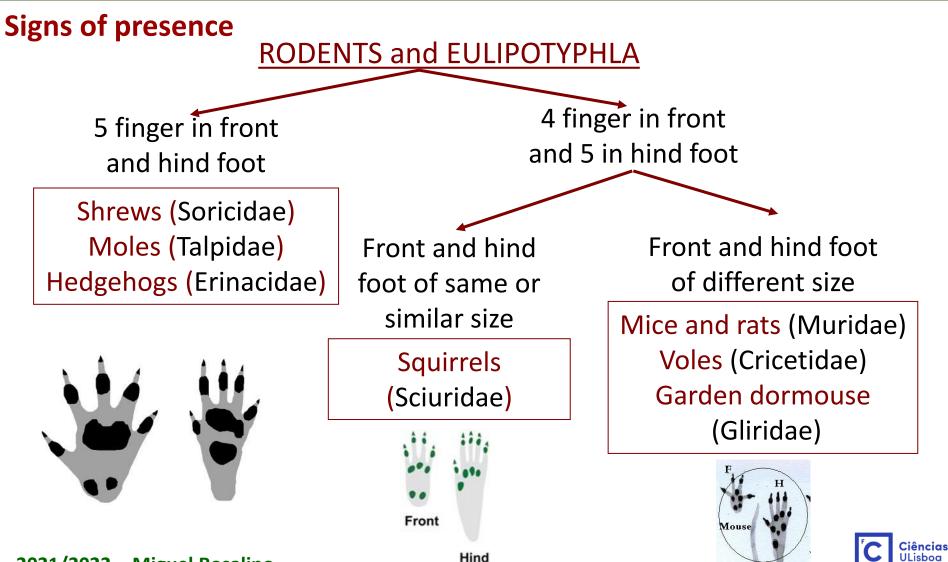
Criteria for identifying footprints

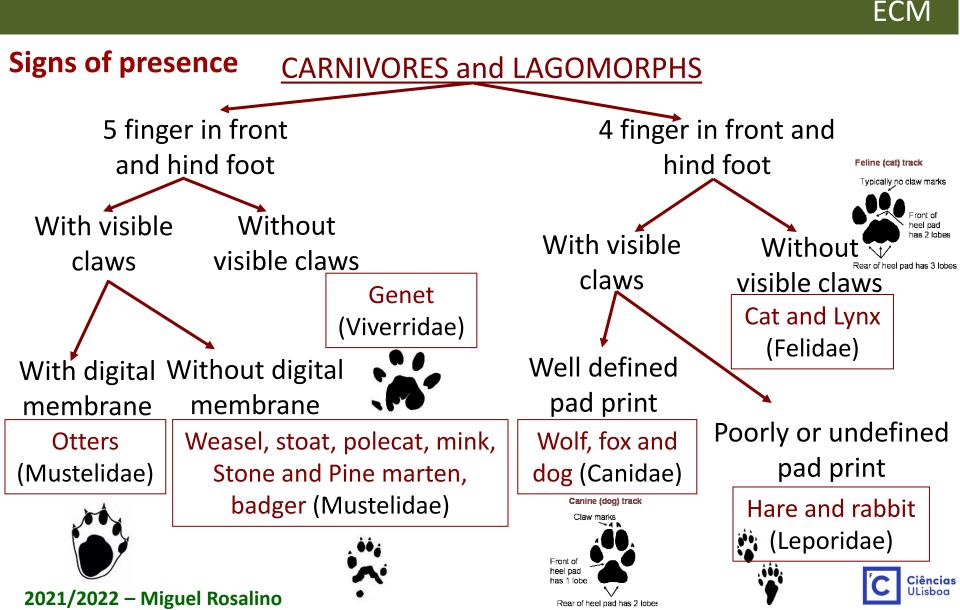
Shape – Digital and palmar pads

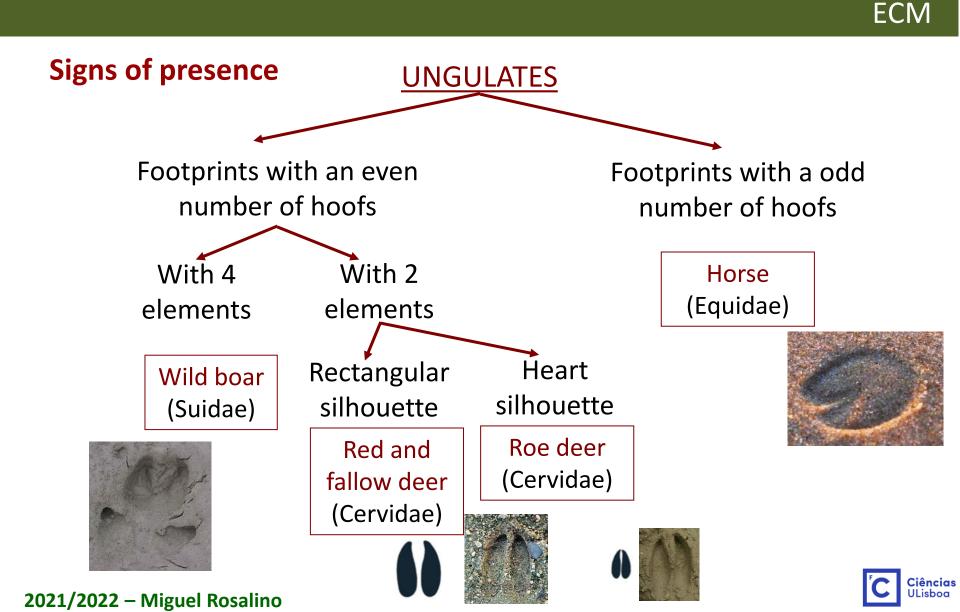
Signs of presence

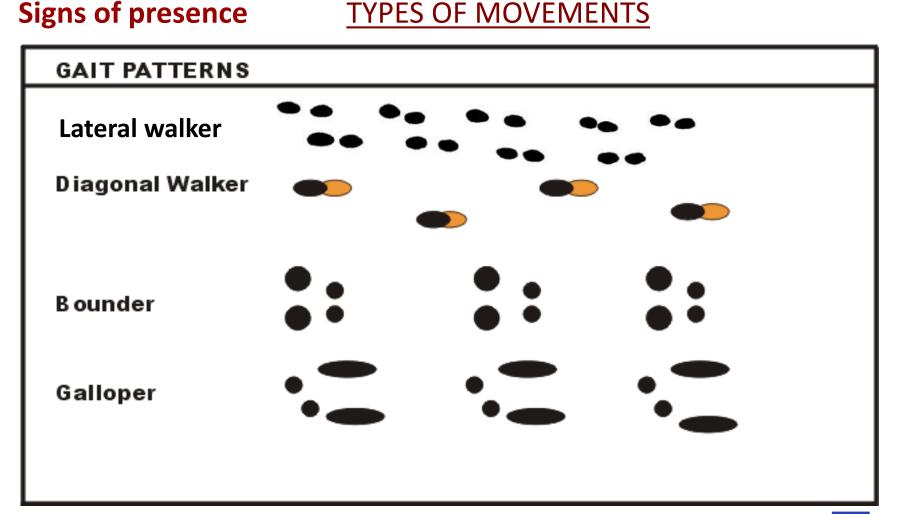
• There are 3 types of footprints:

I – Without any clear
 distinction between
 digital and palmar pads
 RODENTS, EULIPOTYPHLA


II – With a clear
 distinction between
 digital and palmar pads
 CARNIVORES, LAGOMORPHS




III – Hoof marks CERVIDS, SUIDS



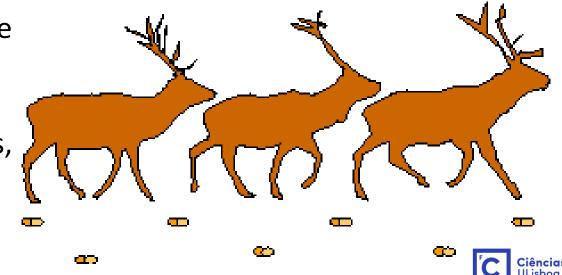
Signs of presence

TYPES OF MOVEMENTS

Lateral walkers

- Move the same side of the body at the same time (e.g. RF & RR)
- These animals have wide, rotund bodies.
- Most of the time these animals use this pattern. As speed increases, they change their pattern.
- e.g. badgers, skunk, porcupine opossum, raccoon, bear

Signs of presence

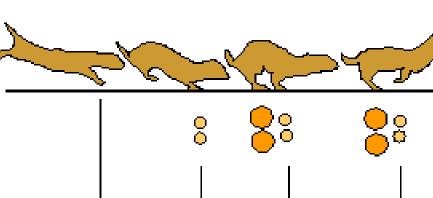

TYPES OF MOVEMENTS

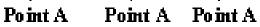
Diagonal Walk Pattern

Diagonal walkers

- The animal moves the opposite sides of the body at the same time (e.g. RF & LR move simultaneously).
- e.g. Ungulates, canids, felids

2021/2022 – Miguel Rosalino


Signs of presence


TYPES OF MOVEMENTS

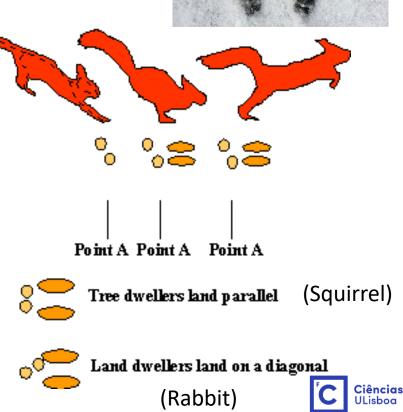
Bound Walkers ("salto")

- The front feet land together, then the rear feet behind
- Most of the time these animals use this pattern even when moving slow or fast.

e.g. Mustelids - All members except skunks & badgers 2021/2022 – Miguel Rosalino Bounder Pattern

Signs of presence

TYPES OF MOVEMENTS


Gallop Walkers

- The front feet land first, then the rear feet come on the outside of the front feet and land ahead.
- Most of the time these animals use this pattern even when moving slow or fast. The pattern doesn't change with speed.
- The distance between sets of tracks increases with speed.

e.g. Lagomorphs, most Rodents

2021/2022 – Miguel Rosalino

Gallop Walk Pattern

Research Article

Can footprints of small and medium sized felids be distinguished in the field? Evidences from Brazil's Atlantic Forest

William Douglas de Carvalho^{1,2,3*}, Luís Miguel Rosalino³, Júlio Cesar Dalponte⁴, Bárbara Santos¹, Cristina Harumi Adania¹ and Carlos Eduardo Lustosa Esbérard²Ocelot, Leopardus pardalis (8,5-16kg)

Abstract

Carnivores, particularly felids, face threats in many regions of the world. They are a crucial component of biodiversity with a functional role in the top of the food chain. Therefore, they have been the target of surveys and monitoring and ecological studies, most of which are based on footprint identifications, an efficient and low-cost method compared to other approaches. In these cases, species identifications may suffer from a high degree of bias due to the overlap in the size and shape of footprints among species. We experimented with small to medium captive wild felids of five species: ocelot, Leopardus pardalis, margay L. wiedii, oncilla, L. guttulus, domestic cat, Felis catus, and jaguarondi, Puma yaqouaroundi). We tested for differences in footprint measurements, including main pad and toe pad sizes. We used humid sand as substrate and took measurements from several front and hind footprints of seven animals per species (except jaguarondi, for which only four animals were available). Our results showed that ocelot is the only species for which it is possible to obtain 100%-accurate footprint identifications, mainly because of its footprint area (i.e., length x width). The remaining species presented a wide variation in measurements, making them almost impossible to distinguish based solely on footprint.

rdus wiedii 6-3,9kg

laguarundi, Puma yaqouaroundi (4,5-9kg)

ECM

Signs of presence

Criteria for identifying scats

- Size
- Shape
- Location
- Odour

ECM

Signs of presence

Criteria for identifying scats

• Shape

- Tubular Canidae, Ursidae
- "Teardrop" Felidae
- "Rolled ribbon" Mustelidae
- "M&M" Lagomorpha
- Oblong (may have a tip at the end) Cervidae
- "Pencil lead" Rodentia

lem

Signs of presence

Criteria for identifying scats

- Location
 - Deposition site soil, tuft of vegetation, tree branch, roof, near water, etc.)
- Number
 - Latrines or isolated scats
- Type of habitat
- Positioning on the trail crossroads of paths, sett/den entrance, pit in the ground etc.)

ECM

Signs of presence

Journal of Zoology

Journal of Zoology. Print ISSN 0952-8369

ECM

Criteria for identifying scats

Factors affecting the (in)accuracy of mammalian mesocarnivore scat identification in South-western Europe

P. Monterroso^{1,2,3}, D. Castro¹, T. L. Silva^{1,2}, P. Ferreras³, R. Godinho¹ & P. C. Alves^{1,2,4}

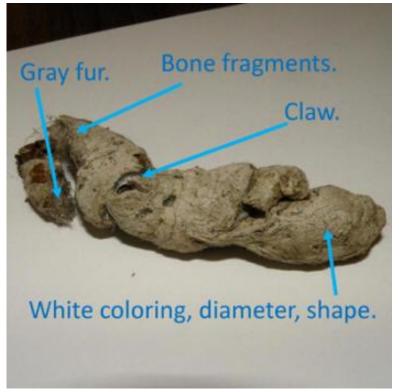
Table 1 Red fox Vulpes vulpes, stone marten Martes foina and European wildcat Felis silvestris relative abundances and genetic results for the scats morphologically identified, collected at Cabañeros National Park (CNP) and Guadiana Valley Natural Park (GVNP), during the summer 2009 and winter 2010

Putative species	Season	Study area	TS	n	SGI (%)	Proportion (%) of samples genetically identified as:				
						Red fox	Stone marten	European wildcat	Polecat	Dog
Red fox	Summer/autumn	CNP	22.08 ± 22.04	26	64.00	82.35	17.65	0.00	0.00	0.00
		GVNP	4.16 ± 6.46	39	79.49	93.55	0.00	0.00	0.00	6.45
	Winter/spring	CNP	34.19 ± 34.68	54	77.78	83.33	11.90	2.38	0.00	2.38
	10	GVNP	2.27 ± 4.96	38	71.05	85.19	3.70	3.70	0.00	7.41
	Overall		16.78 ± 25.28	157	75.52	86.32	7.69	1.71	0.00	4.27
Stone marten	Summer/autumn	CNP	3.53 ± 5.72	30	90.00	7.41	92.59	0.00	0.00	0.00
		GVNP	1.63 ± 3.58	19	94.74	16.67	72.22	0.00	11.11	0.00
	Winter/spring	CNP	2.14 ± 3.83	32	75.00	45.83	54.17	0.00	0.00	0.00
		GVNP	6.26 ± 7.96	45	86.67	15.38	84.62	0.00	0.00	0.00
	Overall		3.34 ± 5.71	126	85.71	20.37	77.78	0.00	1.85	0.00
European wildcat	Summer/autumn	CNP	0.33 ± 0.99	1	100.00	100.00	0.00	0.00	0.00	0.00
		GVNP	2.56 ± 3.50	19	84.21	80.00	6.67	13.33	0.00	0.00
	Winter/spring	CNP	0.74 ± 1.95	0	-	-	-	-	_	-
		GVNP	1.89 ± 3.71	17	69.23	90.00	0.00	10.00	0.00	0.00
	Overall		1.29 ± 2.80	37	78.78%	84.62	3.85	11.54	0.00	0.00

Monterroso et al (2012) Factors affecting the (in)accuracy of mammalian mesocarnivore scat identification in South-western Europe. *Journal of Zoology*, **289**, 243-250.

Signs of presence

Other signs of presence (e.g. dens, setts)


Signs of presence

Other signs of presence (e.g. marks, tree scratches)

ECM

Scat and pellet analysis (e.g. carnivores, owl)

COMPLEMENTAR METHOD

ECM

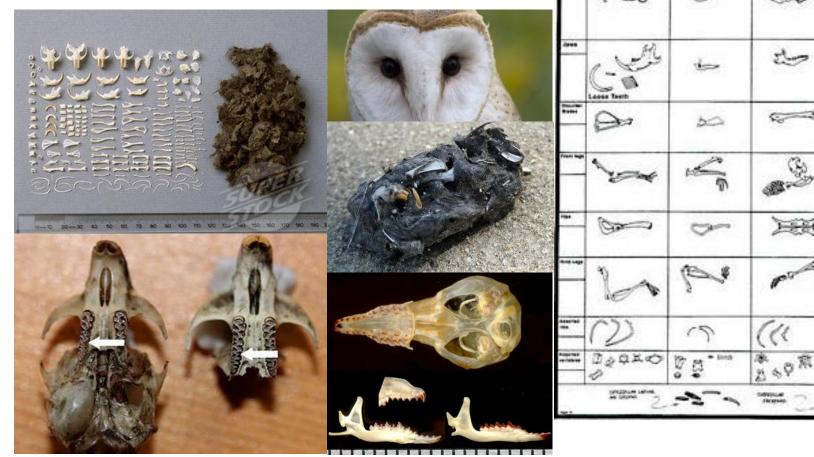
Scat and pellet analysis (e.g. carnivores, owl)

Advantages: non-invasive method, moderate accuracy (difficulty in locating the capture site), low cost, applicable to large scale studies Disadvantages: time demanding, knowledge about the size of the predator's home range

COMPLEMENTAR METHOD

ECM

BIRDS


Bone Sorting Chart

SHREWS

MOLES

RODENTS

Scat and pellet analysis (e.g. carnivores, owl)

2021/2022 – Miguel Rosalino

9.9.20

-

ECM

Direct observation, live captures

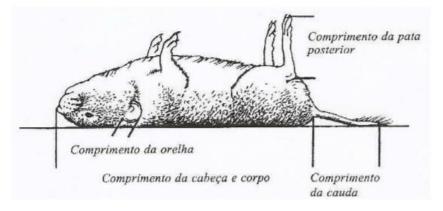
<u>e.g.:</u>

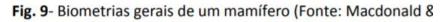
- Direct observation
- Spotlighting
- Live trapping
- Camera-trapping
- Video surveillance
- Drones

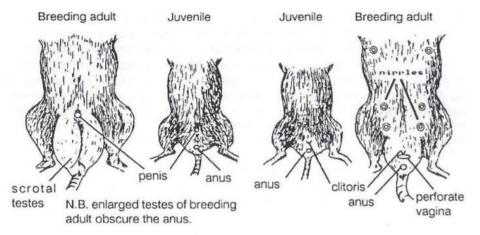
2021/2022 – Miguel Rosalino

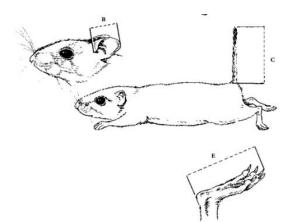
Advantages: high accuracy

Disadvantages: some invasive method (disturbance - e.g. headlamp, or handling), complexity, high cost and only applicable in small scale studies


ULisboa




ECM


Direct observation, live captures

(Live) trapping

Ciências ULisboa

Fig.10- Características sexuais de machos (à esquerda) e fêmeas (à direita) (Fonte: Gurnell & Flowerdew, 1990).

ECM

Direct observation, live captures

Live trapping

Ciências ULisboa

Direct observation, live captures

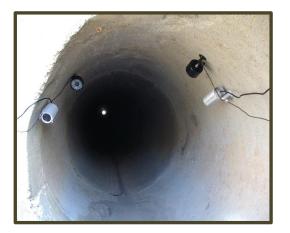
Live trapping

2022 – Miguel Rosalino

ECM

Ciências ULisboa

Direct observation, live captures Trapping transect Abundance Live trapping ROADSIDE HABITAT 🔶 ROAD KILL $\mathbf{\Lambda}$ **Trapping web** Density **Trapping grid** Density **Trapping hexagon** Density 141-160 41-60 21-40 61-80 121-140 1-20 81-100 101-120 2021/2022 – Miguel Rosalino



Direct observation, live captures Camera-trapping

Video surveillance

Direct observation, live captures

Camera-trapping

Ciências ULisboa

2021/2022 – Miguel Rosalino

Direct observation, live captures

<u>Camera-trapping</u> – Mostela-trap

ECM

<u>Camera-trapping</u> – Mostela-trap

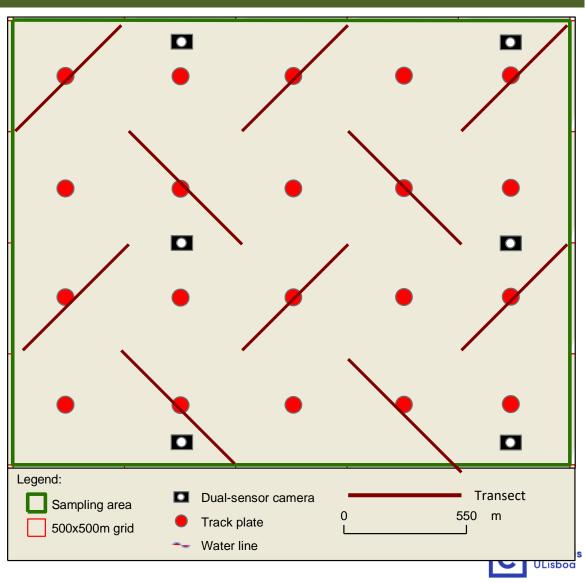
Vincent Wildlife Trust

Spotlighting sampling

Advantages: Less-invasive method, moderate accuracy (difficulty in locating due to distance and lighting conditions), low cost, applicable to local scale

Disadvantages: need for human resources, knowledge about species behavior, good visual acuity

Advantages: moderate accuracy (more efficient for large sized mammals), able to cover wide areas with lower effort


Disadvantages: cost of the drones, need for specialized human resources to maneuver the drones, only applicable to open areas

ECM

Combined strategies

They produce better results especially in situations of low density

Combined strategies

Radio-tracking

- Movements
- Estimation of home-ranges
- Behavior (e.g. circadian rhythms)
- Patterns of resource use (e. g. habitat preferences)

Advantages: moderate to high accuracy

Disadvantages: invasive method (envolves animal's capture and handling), complexity, high cost and mostly applicable to small scale studies

2021/2022 – Miguel Rosalino

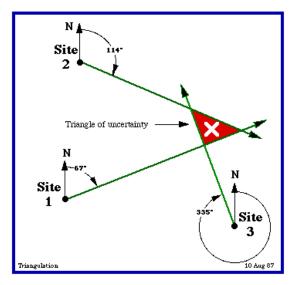
Sampling methods

ECM

Radio-tracking

- Transmitters emitting on a single frequency, placed on a collar, harness or intraperitoneally through a surgical intervention
- Each location has an associated vector (x, y, t), where x and y are the spatial coordinates and t the time coordinate.
- Attributes associated with the vector, e.g., weather conditions, signal intensity, location description, habitat, and behavior (active / inactive) of the animal at location time, etc.

2021/2022 – Miguel Rosalino



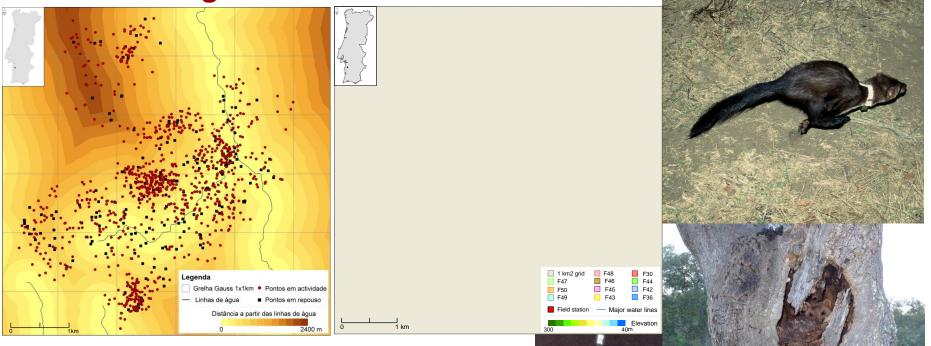
ECM

ECM

Radio-tracking

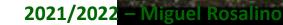
• Triangulation

- Homing
 - Location of the animal on foot and within walking distance.

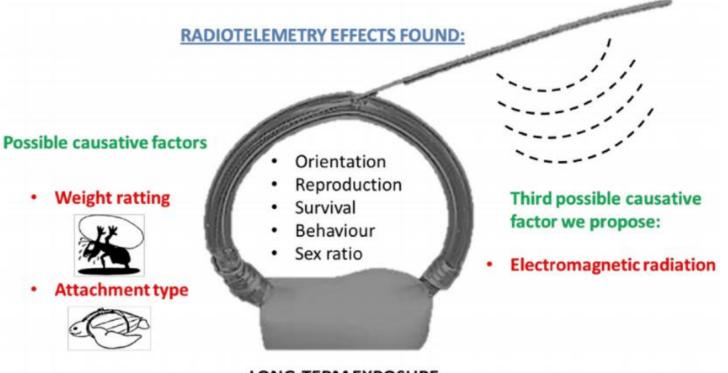


Ciências ULisboa

Radio-tracking



Radio-tracking


Radio tracking bats

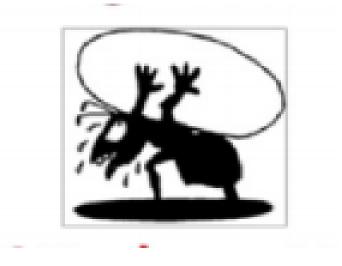
Radio-tr

Radio-tracking – Effects on Mammals

LONG-TERM EXPOSURE

Fig. 1. Radiotelemetry effects found and possible causative factors.

Balmori A. (2016). Radiotelemetry and wildlife: Highlighting a gap in the knowledge on radiofrequency. Sci Total Environ 543: 662-669.



Radio-tracking – Effects on Mammals

Weight rating

- It is recommended that the total radio transmitter and associated devices should not exceed 2–5% of the body weight
- Can affect:
 - Behaviour
 - Movements
 - Reproduction
 - Survival

Radio-tracking – Effects on Mammals

Type of attachment

- various types of attachments might have severe effects such as:
 - impaired survival
 - altered behavior
 - lower reproductive rate
- back-mounted or harness-attached transmitters may cause pathological lesions
- Mortality is more common in implants, harnesses, collars; with no mortality (or rare) reported in studies using tail mounts and glue

Radio-tracking – Effects on Mammals

The importance of considering time

- Studies that found no adverse effects ran for a few weeks/year
- No studies assessed the cumulative/long-term effects
- Generally, the damage is long-term, and the presence of pathological lesions was significantly associated with the length of time animals had been carrying their radio transmitters

Radio-tracking – Effects on Mammals

Non-ionising electromagnetic radiation, i.e. radiofrequency radiation, RFR, from transmitters emitting the signals necessary for tracking

- RFR can cause sublethal physiological disruptions
 - Increase in stress proteins synthesis
 - Calcium channels increased flow calcium into the brain (Physiology impacts)
 - Immune system
 - Nervous system and behavioural effects (e.g. cognitive function, sleep and electrical brain (EEG) response)
 - Genotoxic effects and potential carcinogenicity
 - Fertility, reproduction, offspring viability and sex ratio (e.g. oxidative stress and free-radical might affect fertility and reproduction)
 - Navigational disruption

How to design the sampling strategy

Factors to consider:

- What is the question we want to answer?
- The study spatial scale
- The study temporal scale
- Which is(are) the object(s) of study (physical characteristics and prior knowledge of its biology and ecology)
- What are the characteristics of the environment to be sampled (e.g., homogeneous vs. heterogeneous, terrestrial vs. aquatic)
- Which is(are) the most appropriate study method(s)
- Which is the most appropriate sample design?

ECM